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ABSTRACT

By using the Rayleigh-Ritz method of minimizing the total
potential energy of a structural system, combined load (me-
chanical or thermal load) buckling equations are established
for orthotropic rectangular sandwich panels supported under
four different edge conditions. Two-dimensional buckling in-
teraction curves and three-dimensional buckling interaction
surfaces are constructed for high-temperature honeycomb-
core sandwich panels supported under four different edge con-
ditions. The interaction surfaces provide easy comparison of
the panel buckling strengths and the domains of symmetrical
and antisymmetrical buckling associated with the different
edge conditions. Thermal buckling curves of the sandwich
panels also are presented. The thermal buckling conditions
for the cases with and without thermal moments were found
to be identical for the small deformation theory. In sandwich
panels, the effect of transverse shear is quite large, and by ne-
glecting the transverse shear effect, the buckling loads could
be overpredicted considerably. Clamping of the edges could
greatly increase buckling strength more in compression than
in shear.

KEYWORDS  Sandwich panels; Mechanical buckling;
Thermal buckling; Buckling interaction surfaces; Buckling
interaction curves.

NOMENCLATURE
Amn Fourier coefficients of trial function for w, in.
Ajj extensional stiffnesses of sandwich panel,
1b/in.
a length of sandwich panel, in.
a, edge length of square sandwich panel, in.
a:;’;nkl coefficients of characteristic equations
Bpn Fourier coefficients of trial function for 7.,
in./in.
b width of sandwich panel, in.
Cmn Fourier coefficients of trial function for 7.,

in./in.

Dqz, Dy
D‘

E., Ey
GC:::) GCyz

bending stiffnesses of sandwich panel, in-lb

transverse shear stiffnesses in xz,yz planes,
1b/in.

flexura! stiffness parameters, v/ D11 D2, in-1b
Young’s moduli of face sheets, Ib/ in?

effective transverse shear moduli of
honeycomb core, Ib/in?

shear modulus of face sheets, 1b/in?

depth of sandwich panel = distance between
middle surfaces of two face sheets, in.

depth of honeycomb core, h.=h —t,,in

moment of inertia, per unit width, of a face
sheet taken with respect to horizontal
centroidal axis of the sandwich panel,

I, = 1t,h% + {413, in*/in.
index, 1, 2, 3, - -~
index, 1, 2, 3, - -~
index, 1, 2, 3, ---
compressive buckling load factors in z- and

2 2
y-directions, kz = Efg:, ky = 'Iy!%?,

s ™
for a = constant
. N a®
shear buckling factor, kzy = ;,’5,—, for
a = constant
modified compressive buckling load factors in
_ 2 _
z- and y-directions, k; = -71—:]2’—%% = k,(—l;, k, =
2
'-,IFV'A%_: = k,,%, for ab = a2 = constant
modified shear buckling load factor, kzy =
2
%-?’Dgf- = k,y%, for ab = a2 = constant
index, 1,2, 3, - --
bending moment intensities, (in-1b)/in.

twisting moment intensity, (in-1b)/in.



MT, MT, MT, thermal moments, (in-Ib)/in.

m number of buckle half waves in z-direction

Nz, N, normal stress resultants, lb/in.

Nzy shear stress resultant, Ib/in.

NI,NT,NT  thermal forces, Ib/in.

n number of buckle half waves in y-direction

Q:,Qy transverse shear force intensities, 1b/in.

T temperature, °F

Ter critical buckling temperature, °F

t, thickness of sandwich face sheets, in.

v total potential energy of sandwich panel,
in-1b

Wi strain energy of sandwich panel, in-lb

Vo work done by external forces, in-1b

UV, W middle surface displacement components in
z-, ¥-, and z-direction, in.

T,Y,2 rectangular Cartesian coordinates

Q, Oy, Oizy coefficients of thermal expansion, in/in-°F

Yez: Vyz transverse shear strains in zz- and
yz-plane, in./in.

¢ numerical coefficient of NT in a}! .,

n numerical factor in buckling equation, and
associated with an edge condition

3 numerical coefficient of NT in all. .,

Vrey, Vyz Poisson ratios of face sheets, also used for

those of sandwich panel

INTRODUCTION

The structural components of hypersonic flight vehicles
(e.g., spacecraft, rockets, reentry vehicles, aircraft, etc.) are
subjected to hyperthermal loadings caused by hostile aerody-
namic heating during ascent and reentry, or caused by solar
radiation during spaceflight. These structural components
have to operate at elevated temperatures and, therefore, are
called hot structures. Because of nonuniform heating (which
is magnified by the cooler substructural frames that act as
heat sinks) and the mechanical structural constraints, severe
thermal stresses could build up in those hot structures. Ex-
cess thermal loading may induce material degradation, ther-
mal creep, thermal yielding, thermal buckling, thermal crack
fracture after cool down, etc. Any disruption of the surface
smoothness of these structures (e.g., metallic thermal protec-
tion system (ref. 1) or hypersonic aircraft engine inlet struc-
tures (refs. 2, 3), etc.) caused by the above failure modes,
especially thermal buckling, could disturb the flow field, cre-
ating hot spots that could cause very serious consequences to
the structures. Thus, the thermal load is a key factor in the
design of hot structures. Reference 1 discusses various design
concepts of both hot and cryogenic structural components

for hypersonic flight vehicles. The potential candidates of
high-buckling-strength hot-structural panels (fabricated with
superalloys) for hypersonic aircraft applications are tubu-
lar panels, beaded panels, truss-core sandwich panels, hat-
stiffened panels, honeycomb-core sandwich panels, etc. (refs.
4, 5). The combined-load buckling behavior of tubular panels
was studied by Ko et al. (ref. 4) extensively both theoretically
and experimentally. The compressive buckling characteristics
of the beaded panels were investigated by Siegel (ref. 5).

Recently Ko and Jackson (ref. 6) and Percy and Fields
(ref. 7) studied the compressive buckling behavior of a hat-
stiffened panel designed for application to the hypersonic
aircraft fuselage skin panel. Furthermore, Ko and Jack-
son conducted simple analysis of thermal behavior (thermal
buckling of face sheet) of a honeycomb-core sandwich panel
(ref. 8) and compared the relative combined-load buckling
strengths of truss-core and honeycomb-core sandwich panels
(ref. 9). They also investigated the effect of fiber orientation
of a metal-matrix face sheet on the combined-load buckling
strength of honeycomb-core sandwich panels (refs. 10, 11).
Most of the past mechanical buckling analyses of sandwich
panels (refs. 4-7 and 9-12) and flat plates (refs. 13, 14) were
conducted for simply supported edge conditions because the
analysis was mathematically less involved. For the case of
clamped edge conditions, Green and Hearmon (ref. 15) stud-
ied combined loading stability of plywood plates, and Smith
(ref. 16) considered only pure shear buckling of the plywood
plates. Kuenzi, Erickson, and Zahn (ref. 17) considered also
shear stability of flat panels of sandwich construction. The
workers cited here ignored the transverse shear effect in their
analyses. King (ref. 18) analyzed the stability of clamped
rectangular sandwich plates subjected to in-plane combined
loadings, taking into account the rotational effect of the sand-
wich core. A less-compact displacement function (that could
be reduced to a simpler Green and Hearmon displacement
function (ref. 15)) was used, resulting in a very complicated
expression for the potential energy of the sandwich system.
Most of the past thermal buckling analysis was done on single
plates (refs. 19-22) or laminated composite plates (refs. 23~
27), for which the transverse shear effect may be neglected.
In the actual application of hot structural panels, most panel
boundary conditions are closer to the clamped edges rather
than the simply supported edges. Therefore, this paper will
consider the combined-load mechanical and thermal buckling
of sandwich panels under different types of edge conditions by
taking into account the transverse shear effect, and will com-
pare the buckling interaction curves and surfaces for different
edge conditions.

DESCRIPTION OF PROBLEM

Figure 1 shows the geometry of a rectangular honeycomb-
core sandwich panel having identical face sheets. The exten-
sional and bending stiffnesses of the panel will be provided by
the two face sheets only, and the transverse shear stiffnesses
by the honeycomb core only.
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Fig. 1. A honeycomb-core sandwich panel.

This type of sandwich panel, when fabricated with high-
temperature alloy (e.g., titanium alloy), becomes the so-
called hot structure and could be a potential candidate for
hypersonic aircraft structural applications (ref. 1). Figure 2
shows the sandwich panel subjected to combined compres-
sive and shear loadings in its middle plane. The conventional
Rayleigh-Ritz method of minimizing the panel total poten-
tial energy will be used in the combined-load buckling anal-
ysis, accounting for the transverse shear effect (fig. 3). The
sandwich panel! will be supported under four different edge
conditions:

e Case 1: Four edges simply supported (4S edge condition)

e Case 2: Four edges clamped (4C edge condition)

e Case 3: Two sides clamped, two ends simply supported
(2C2S edge condition)

e Case 4: Two sides simply supported, two ends clamped
(2S2C edge condition)

where the sides and ends are parallel to the z- and y-axes,
respectively.
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Fig. 2. Forces and moments acting on differential element of
a sandwich panel.
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Fig. 3. Deformation of a sandwich panel in zz-plane.

The problem is to study the effects of the panel edge con-
dition and the panel aspect ratio on the combined-load buck-
ling behavior of the sandwich panel. Case 1 has already been
solved and was published in reference 9. For completeness,
however, some key equations for Case 1 will be repeated in
this paper.

GOVERNING EQUATIONS

Constitutive Equations
For the classical orthotropic thick plate theory, the
thermoelastic constitutive equations for membrane forces,
moments, and the transverse shear constitutive equation may
be written as (fig. 2)
&
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Q: _ DQ: 0 Yzs (3)

Qy 0 Dgq, Tyz

For the sandwich panel whose extensional and bending
stiffnesses are provided only by the two identical face sheets,
and the transverse shear stiffnesses only by the honeycomb
core, the extensional and the bending stiffnesses {4,;, D;;}
in equations (1) and (2), and the transverse shear stiffnesses
{Dgqz, Dgy} in equation (3) may be written as
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A?l ) D21 = [2t y 21 ___u’¥ v 4
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where the 2 in front of {t,,I,} in equation (4) is associated
with two identical face sheets.

The thermal forces {N7, NT,N],} and the thermal mo-
ments {M7,MT, M1} appearing in equations (1) and (2)
are defined by:

NI, M] 2
Ny M] =2{[ LT, (-1 4T |
NI, ML | =
E: VyzEz
T —veyiyz 1 —vzytiys Oz
x vey By y ay (6)
T —vpytyz 1 — gyl asy |,

where i = 1, 2 are associated, respectively, with the lower
and the upper face sheets, and [ }; (i = 1, 2) implies that the
material properties are associated with temperature T; (i =
1, 2). The thermal force and thermal moment contributions
from the honeycomb core were neglected.

Energy Equations

Based on the small deformation theory, the strain energy
V1 of the heated sandwich panel may be written as (refs. 23,
24, 26, 27)
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For the buckling problem, the work done V3 by the in-plane
forces to produce transverse deflection is given by

sei L (B e () B)
wE)]e o

The total potential energy V of the sandwich panel is then
V=W+W

Panel Boundary Conditions

The sandwich panel is to be supported at its four edges
under the following four cases of boundary conditions:

For mechanical buckling:

-y

Case 1. 4S edge condition: z=0,a: w=M: =7, =0
y=0b:w=M, =79, =0

Case 2. 4C edge condition: z=0,a: w= %'”E =Ygy =
Vs =0 y=0,b=w=%"’;=7u=7w=0

Case 3. 2C2S edge condition: z=0,a: w= M; = 7y; =0;

y=0,b: w=%%=7zz=7ys=o



Case 4. 252C edge condition: z = 0,a: w = %‘;" = Yzz =
Ye=0; y=0,b: w=My=7.,=0

For thermal buckling:

In addition to the above boundary conditions, the following
edge condition is to be imposed:
=0a: u=v=0;y=0b: u=v=0

BUCKLING ANALYSIS

The conventional Raleigh-Ritz method of minimization of
total potential energy V will be used in the buckling analysis.

Panel Deformation Functions

For an eigenvalue solution via the Rayleigh-Ritz method,
the trial functions for the sandwich panel deformation
{w, Vzz, Y4z}, satisfying the boundary conditions, may be ex-
pressed in the following double Fourier series:

Case 1. 4S edge condition (ref. 9)

w(z,y) = z Z Apn Sin m sin n_:! (9)
m=1n=1
Yes (2,) = Zzamcos"‘" sin 22 (10)
m=1n=1
Ys(Z,¥) = iicm,sinmcosn—:! (11)
mel n=xl
Case 2. 4C edge condition (ref. 15)
w(z,y) = sin 2= sin = 5 Z E Amn 8D _mlz_ sin n—:y (12)
m=1n=1
Yxs(Z,y) = cO6 — % sin -2 Z Z B sin —"— sin E%V-
m=1 n=1
+sm — sm— Z z:mB,..,.cos—WE | n1ry (13)
m=1 n=1
Yyz(Z,y) = sin "Tz co6 fbﬁ i i Cmn 5in :"_Z'_f sin ?
m=1 n=1

+sm Zsn Y Z 2 NComn SiD w— cos 1? (14)

m=1 n=1

Case 3. 2C2S edge condition (ref. 15)

w(z,y) = sin — Z Z Ao sin ——E sin n_:g (15)

m=1n=1
xT . BT
Yoz, ¥) = sin =¥ Zl z; B CO8 - sin -TE (16)
ne=

o0 o0
Y . mwxz . nmy
b E E Comn Sin e sin 3

1n=1

+sin — i zm:ncm,l sin ——

'Yy:(xv y) = cos

oosf’b'—y 17)

Case 4. 282C edge condition (ref. 15)

w(z,y) = sin — Z 2 Amn sin = sin n_:_y

m=] n=1

AT o= mnz nry

z . .

e E E Bmn Sin sin —
a a b

m=]l n=l

(18)

Y2:(Z, y) = co8

nmy

+sm—z:z:mB,.mcosm7rz sin -

m=l n=1

Yys (T, y) = sin — Z Z Cmn 5iD EE E?

m=l nel

(19)

(20)

Uniform Temperature (Zero Thermal Moments)

It is well known that thermal stresses are not caused by ex-
ternal loads but are the consequences of restrained thermal
distortion. The intensities of thermal stresses will change
when a structure is deformed; therefore, the thermal stress
levels are the functions of strains. In classical thermal buck-
ling of a structural panel (under uniform temperature rise
with constrained edges), the first-order lateral deflections of
the panel will cause only second-order small changes in the in-
plane strains (thus, thermal stresses) at the onset of thermal
buckling (ref. 28). In mechanical buckling, however, the ex-
ternal loads are held constant during buckling. If the second-
order effect is neglected, then the in-plane thermal loads may
be considered constant during thermal buckling. Thus ther-
mal buckling problems would be equivalent to mechanical
buckling problems; therefore, the conventional methods of
structural stability analysis may be applied to the thermal
buckling analysis.

The buckling equations will be developed first for the
mechanical buckling under the combined loading condition
{N; = —N;, Ny, — —N,, N;, — =Nz} The resulting
mechanical buckling equation could then be applied directly
to the thermal buckling of the sandwich panels with con-
straint edges under umform panel temperature (i.e., {N; =
-N;ra Nll=—N Nzy y} {M.Z.vMT My}—o

u=v=w = 0).
Characteristic Equations in Terms of Load Factors

After substituting the trial deformation functions (egs. (9)
through (20)) into the energy equations for V) (eq. (7)) and
V, (eq. (8)) (signs of forcing functions reversed), and after
performing the double integrations, the components of V; and
V, may be calculated for different indicial conditions under
different panel edge conditions (ref. 29).

Substituting V; and V., expressed in terms of Fourier coef-
ficients Amn, Bmn and Cpmy (ref. 29) into V, and then min-
imizing V with respect to each of {Amn, Bmn, and Cmn}
according to the Rayleigh-Ritz principle,

v 8V _ 8V
8Amn  0Bmn  0Cmn

=0 (21)



one obtains three homogeneous simultaneous equations (i.e.,
characteristic equations) for each indicial set of {m,n}.
Those three equations may be combined into one character-
istic equation containing only the panel deflection coefficient
Age. Na.mely,

[M""‘"‘ (22)

+ 6mnkl] Akt =0
k-—l l—l

where the stiffness/geometry parameter Mpnk¢ appearing in
equation (22) is defined as

12 23 31 —all 33
+ Gmnke (a2nks0%nkt — oankeOmnke)
Crnkt%mnkt — OmnktEmnks

mnu

(%)’

ankl = 7'

- —
transverse shear effect terms

Jeo

o

thin plu.c
th-ory term

21 22 31
mnkl (a’ nké amnkl Cmnks a'mnu)
Crinkt%mnkt — SmnktCmnke

n ——
transverss shear sffect terms

where the coefficients a2 ., (i, = 1, 2, 3) are the partial
functions of {D;;, Dz, Dgy, ™, n, @, b, kz, ky} and their
functional forms vary with indicial and edge conditions. For
the 4S, 4C, 2C2S, and 2S2C edge conditions there are 1, 9,
3, and 3 different sets of a,2,,,,, respectively, and these are
defined in reference 29.

In equation (23) 7 is a numerical parameter, and in equa-
tion (22) &mnke is a special delta function which is nonzero
.only when m £ k = odd, and n & £ = odd.

|

Case 2. 4C edge condition

Case 1. 4S edge condition

7 =32

6,,"; = mnkf

M= K)(n im+k=o0dd,n+tf=o0dd

(24)

)

77_'(_)_ Smnkt =

mnkl{m3+k2—2|n?+£ ~2

m+tk=o0dd,ntf=o0dd

(25)
Case 3. 2C2S edge condition
n =8
P mnkl[2 — (n? + £2))
mkt = T —R)(n? — ) [(n+ O — 4|[(n - 7 - 4]’
m+k=o0dd,ntf=o0dd
(26)
Case 4. 252C edge condition
n =8
P mnkf]2 — (m? + k?)) .
T mT — B (0~ B)[(m + ) - 4)[(m — k)* - 4]
m=*k=odd,n+f=o0dd
(27)

6

The characteristic equation (22) forms a system of infi-
nite number of simultaneous homogeneous equations (i.e.,
one infinite series equation for each set of {m,n} values).
Because there is no coupling between the even case (sym-
metric buckling) and the odd case (antisymmetric buckling)
(ref. 9), those simultaneous homogeneous equations may be
divided into two groups that are independent of each other:
one group in which m £ n is even, and the other group in
which m £ n is odd (refs. 9, 13, 14).

For the deflection coefficients Axs to have nontrivial so-
lutions under the assigned values of {k;,k,, g}, the deter-
minant of coefficients of unknown Ag¢ of the simultaneous
homogeneous equations generated from equation (22) must
vanish. The largest eigenvalue 1/k;, thus obtained will give
the Iow&st shear buckling load factor k., for given values

{kz, ky, a} When the transverse shear effect is neglected

(egs. (22), (23)), {kz,ky,kzy} are a function only of b , and
independent of panel size. However, they will become panel-
size dependent if the transverse shear effect is considered.

In the actual eigenvalue computations, the determinants of
order 12 were found to give sufficiently accurate eigenvalue
solutions (ref. 9). These determinants are given in reference
29 for the cases m + n = even (symmetric buckling) and
m+ n = odd (antisymmetric buckling) for different edge
conditions.

Characteristic Equations in Terms of Temperature

For thermal buckling, the main objective is to find the
buckling temperature, T, rather than thermal buckling
loads. Therefore, equation (22) needs to be rewritten in terms
of temperature rather than load factors. For the uniform tem-
perature case, the thermal forces have the following forms:

= (Aua: + /iua,) T
N;r = (Anaz + Apay,)T
NI = Ageaz, T (28)

which were obtained from equations (4) and (6) setting 71 =
T2 =

The coefficient a}l, ., appearing in equation (23) contains
thermal forcing terms (ref. 29). Thus, all,,, may be written
in two parts as

adnke = Bkt + (M E)NT +C(n, ONY] - (29)
where all,,, is the first part of al} ,, without the thermal

forcing terms, £(m, k) and {(n,#) are, respectively, the nu-
merical coefficients of NT and NT, whose values change with
the indicial and the edge conditions.

In light of equation (29), equation (22) could be rewritten

ES[E

o0 o0

D

k=11{=

M mnkl

+ Pmnkl + 6mnkl] Akt =0 (30)



where Mmnke is the modified Mmnxe in which a},}nu is re-

placed with @mnxe, and
_ob
ﬂABGOzy

[E(mv k)(Ana: + A12ay)

Pmnkt =

+¢(n, O(Anas + Anay)] @31)

In equation (30), both Mumake and Prmnke terms contain
material properties that are temperature dependent. Thus,
in the eigenvalue solution process using equation (30), one
has to assume a temperature T, and use the corrrespond-
ing material properties as inputs to calculate the eigenvalue
1/T. where T, is the buckling temperature. This iteration
process must be continued until the assumed temperature T.
approaches the buckling temperature Ter.

Thus, in thermal buckling, the eigenvalue solution process
requires a temperature jteration process and, therefore, is
slightly different from that in mechanical buckling for which
only a one-step eigenvalue solution process is needed.

Different Face-Sheet Temperatures (Nonzero
Thermal Moments)

When face-sheet temperatures are different (i.e., Ty # T2),
the sandwich panel will be subjected not only to ther-
mal forces {NJ,NT,NL} but also to thermal moments
{MT,MT,MZ}. The problem then becomes a bending one
and no longer an eigenvalue problem. The panel deflection
w can then be calculated in terms of Fourier coefficient Amn.
The buckling condition will correspond to that when the term
in series representation of w (associated with a particular
buckling mode shape) becomes unbounded (i.e., Amn — 00
for a given {m,n}). For this case the 4S edge condition will
be analyzed as an example.

Thermal Moments
Let the thermal moments {MT,MT , M1} be expressed

in double Fourier series in accordance with the deformation
functions given in equations (9) to (11) as

MI=Y" 2 Fop SN ot ‘r% (32)
"
MI =33 Hpnsin s 1‘-:—" (33)
m=1ln=
_ - mrz _ nwy
M,,=m2=31§smws - (34)

where the Fourier coefficients Fiyn, Hmn, Smn ar€ given by

4 o . mmz, mmry
F'""—E j /o M sin 2 sm—b—dxdy (35)
4 [ .. mmrz . mmy
H""'_E/., /a M, sin . sm—b—da:dy (36)

4 o mrz  nmy
Sm“=£‘/; -/; M,ycos—a—cos—b—da:dy (37)

In light of the deformation functions (egs. (9) to (11)) and
the thermal moment expressions (egs. (32) to (34)), the en-
ergy equations (7) (setting u = v =0) and (8) may be inte-
grated to yield the forms given in reference 29. The thermal
moment terms turned out to be linear functions of Amn, Bmn,
or Crmn, and not quadratic functions of {Amn, Bmn, Cmn} in
the energy expressions (ref. 29).

Nonhomogeneous Equations

After the application of the Rayleigh-Ritz method accord-
ing to equation (21), one obtains three nonhomogeneous si-
multaneous equations for each indicial set of {m,n}, which
may be combined to yield one equation in terms of At
(ref. 29):

M. oo oo
MAmn + Z E 6mnklAkl = Rnmn

kzy k=1p=1
where Mpnmn is defined in equation (23) under the con-

ditions m=k, n=¢£, n=32, and the nonhomogeneous term
Roynmn is defined by

(38)

o = 57 (7).

a}? (K mn G - Lmna?r?nmn)
23 32

[Jm“ - 22 33 —a a
AnnmnGmnamn mnamn%mnmn

+—3 33
23 32
GrnmnCmnmn ~ CmamnCmnmn

where Jmn, Kmn, 8nd Ly, are defined as

Jmn = Fmn (“’¥)2 + Hmn (ﬂ)z —25mn (E:;—w) (?bl)

’ (40)
Kmn = —Fmn (%"') + Smn (%) (41)
Lmﬂ = —Hmn (mT”) + Smn (%) (42)

Equation (38) forms an infinite number of nonhomogeneous
simultaneous equations, each of which is associated with a
set of {m,n} values (or mode shape) for the calculation of an
infinite number of Fourier (or Ritz) coefficients Amyn in the
series representation of panel deflection w(z,y) (eq. (9)).

Buckling Condition

The calculated Ritz coefficients A, have the following
functional form:

(43)



where the numerator [  ]mn contains {Mmnmn, Rmamn,
Smnke}, and the denominator A is the determinant of the
coefficients of Axe of the nonhomogeneous simultaneous equa-
tions written out from equation (38). The detailed expres-
sions of A of order 12 is shown in references 9 through 11
and 29 for either symmetrical or antisymmetrical buckling.

The mathematical meaning of the buckling state in light
of equation (43) is that the Ritz coefficient Amn becomes
unbounded (i.e., infinite panel deflection, or A — 0). That
is, when the buckling state is reached, the term in the series
(eq. (9)) that corresponds to the particular deformation mode
shape becomes the most important term.

From the above analysis, one sees that the buckling condi-
tions for the cases with and without the thermal moments are
identical (i.e., A = 0) under the classical small deformation
theory. Because of this finding, similar bending analyses for
nonzero thermal moments for other edge conditions were not
carried out.

NUMERICAL EXAMPLES

Physical Properties of Sandwich Panels

The sandwich panel is assumed to be fabricated with tita-
nium face sheets and titanium honeycomb core, having the
following geometrical and material properties:

Geometry: h = 1.2in.; t, = 0.032 in.; a = @, = 24 in. (for
varying b), or ab = a2 (for constant panel area)

Material properties:

Face sheets
70°F 1000 °F
E: = E,, Ib/in? 16 x 108 10.5 x 108
Gzy, Ib/in? 62 x 108 4.7 x 108
Vzy = Vyz 0.31 0.31
@z = ay, in/in-°F | 4.85 x 10~ 5.6 x 10~°
Qzy, in/in-°F 0 0

Honeycomb core (properties at 600 °F)

Goys =0. 81967 x 108 Ib/in?

Buckling Interaction Curves

In generating the data for plotting the buckling interaction
curves, k, was set to zero. For a given g, different values of
k. were assigned; then the corresponding eigenvalues 1/kz,
were calculated from equation (22). Typical buckling interac-
tion curves plotted in k-k, space for square panel (% =1)
are shown in figure 4. The additional set of buckling interac-
tion curves shown in broken curves is for the case when the
effect of transverse shear is neglected. For the square panels,
the buckling interaction curves for 4S, 252C, and 4C cases
are continuous curves of symmetric buckling. However, for
the 2C2S case, the buckling interaction curves are composite

curves, partly for symmetric buckling and partly for anti-
symmetric buckling. Notice that the effect of the transverse
shear is quite large for the sandwich panel. Without a con-
sideration of the transverse shear effect, the sandwich panel
buckling strength could be overpredicted considerably. The
4S case has the lowest buckling strength. Through clamp-
ing two opposite edges (i.e., from 4S case to 2C2S and 282C
cases), the buckling strength could be enhanced considerably.
By additional clamping of the other two opposite edges (i.e.,
from 2C2S and 252C cases to 4C case), further improvement
of the buckling strength could be achieved. However, the im-
provement is not as large as that for the previous case (i.e.,
from 4S case to 2C2S and 2S2C cases). With or without a
consideration of the transverse shear effect, the improvement
of buckling strength through edge clampings is larger in pure
compression than in pure shear.

12
With transverse shear effect

——~—— No transverse shear sffect
A Antisymmetric buckling (m=2,n=1)
10F =~~~ s

Symmetric buckling(m=1,n=1)

L e e
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Fig. 4. Combined load buckling interaction plots for a
honeycomb-core sandwich panel under different edge condi-
tions.

Buckling Interaction Surfaces

By using families of buckhng interaction curves gener-
ated for different values of — (a = constant) and for differ-
ent edge conditions, three-dxmensnonal buckling surfaces were
constructed in {kz, kzy, a] space as shown in figure 5. In the
figure, the domains of symmetric and antisymmetric buck-
ling (lowest buckling modes) are also shown. Figure 5 shows
better visualization of the buckling behavior of the sandwich
panel than the traditional buckling plots of k, as a function

of %, and k,, as a function of -Q. For slender rectangular
panels (i.e., < 1), antisymmetric bucklings occur mostly in
the compresslon-dommated regions. For wider panels (i.e.,
-g > 1), the antisymmetric bucklings take place in the shear-
dominated regions. In the neighborhood of % = 1, the lowest
buckling modes are all symmetric (i.e, m =1, n = 1) for
the 4S, 4C and 2S2C cases, and only for the 2C2S case, the



lowest buckling mode in the compression-dominated region is
antisymmetric (i.e., m = 2, n = 1). Such buckling behavior

also occurs in the flat rectangular plates of g = 1.
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(c) Two sides clamped, two ends simply supported (2C28S).

Fig. 5. Buckling interaction surfaces for honeycomb-core
sandwich panels under different edge conditions (a = con-
stant).

x
b
-
oy

A Antisymmetric buckling
S Symmetric buckling

/s w0 &/ 6 v ®» ©

) Booo TN Kxy

wx-----4---
>

4 930341

sl

(d) Two sides simply supported, two ends clamped (252C).
Fig. 5. Concluded.

Buckling Curves for Pure Compression and Pure
Shear

The buckling surfaces shown in figure 5 were constructed
under the condition a = constant, and may not serve as ideal
design plots for aerospace structural panels, because, when
-g is changed (under a = constant), the panel weight (i.e.,
panel area ab) also is changed accordingly. In the aerospace
structural designs, the main objective is the structural op-
timization. That is, for a given panel weight, the objective
is to search for a panel with optimum buckling strengths (or
stiffnesses). For this reason, modified buckling load factors
k; and kg (k, = 0) were recalculated as functions of $
under the condition ab = a2 = constant (instead of a = con-
stant). Figures 6 and 7, respectively, show the alternative
plots of k. as a function of % for pure compression and E,y

as a function of % for pure shear when the panel area ab
was kept unchanged. In practical applications, the panel has
to be supported by an edge frame (cross section assumed
constant); therefore, the edge frame weight (or edge frame
length, (a + b)/2a,) was also plotted in figures 6 and 7 as
a function of %. The square panel (% = 1) has the mini-
mum edge frame weight; however, it does not have the opti-
mum buckling strengths both in compression and shear. The
compressive buckling strengths (fig. 6) reached minimum at
b - 1.6, 14, 2.2, and 1.0, respectively, for the 48, 4C, 2C25,
and 252C cases. The lowest shear buckling strengths (fig.
7) occur at % = 0.9, 0.9, 1.2, and 0.7, respectively, for the
4S, 4C, 2C2S, and 2S2C cases. Figures 6 and 7 serve as de-
sign curves for selecting the desired sandwich panel geometry
(i.e., % value). To boost the panel buckling strengths both in
compression and shear, some weight penalty resulting from



the edge frame is inevitable. The desirable high stiffness-to-

weight-ratio panel shapes will be slightly slender (% < 1),
especially in light of the compressive buckling strength.

=TT R
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;L Minimum edge
;. frame weight

1

TN
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ab = constant
Edge
condition 0.5
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2C28
48

4

»ig N
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Fig. 6. Comparison of compressive buckling strengths of
honeycomb-core sandwich panels under different edge con-
ditions (constant panel areas).
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Fig. 7. Comparison of shear buckling strengths of
honeycomb-core sandwich panels under different edge con-
ditions (constant panel areas).

Thermal Buckling Curves

For most of the practical materials, the coupling coefficient
of thermal expansion a.y is zero. Therefore, in generating the
data for thermal buckling curves, the following conditions
were imposed: a; = @y, an, =0 (ie, NI, = MJ,
0), MT = M;" =0.

These conditions will induce in-plane biaxial thermal com-
pression without shear and bending. Figure 8 shows the
buckling temperature, T,,, plotted as a function of g, with
the panel length a kept constant. Those thermal (biaxial

10

compression) buckling curves somewhat resemble the uniax-
ial compressive buckling (mechanical buckling) curves k; as

a function of g shown in figure 5. For buckling temperatures
higher than 1000 °F, the face sheet material property data at
1000 °F were used as inputs to equation (30) for T calcu-
lations because of the lack of material property data at high
temperatures. For the honeycomb core, the only available
material property data at 600 °F had to be used as inputs
for T, calculations. The buckling temperature T, was found
to be relatively insensitive to the material property change
with temperature.

For the present particular panel (i.e., dimensions chosen),
the thermal buckling temperatures T, exceed the titanium
melting point (3074 °F) at the low % and gradually decrease
with the increase of %. At high aspect ratios, Te for 4S
and 2C2S cases level off at about 1000 °F (below superplas-
tic temperature, 1650 °F), and for 4C and 252C cases, at
temperatures slightly below the melting point.

9x10°

~

T

—b—

a = constant

Ter:

r -3

Edge
condition
4C

252C

Meiting point 3074 °F

(2]

~n

Superplastic temperature 1650 °F

2C2S
4S

4

1] b4

930342

Fig. 8. Thermal buckling temperatures for honeycomb-core
sandwich panels under different edge conditions (a = con-
stant).

Figure 9 shows the alternative plots of T, as a function

of % for constant-area panels (i.e., ab = constant). The
lowest buckling temperatures for 4S, 4C, 2C2S, and 252C
cases are, respectively, at 1297 °F, 3702 °F (above melt-
ing point), 2194 °F (above superplastic temperature), and
2205 °F (above superplastic temperature) and occur, respec-

tively, at 2 = 1.0, 0.975, 1.8, and 0.5.

For the present sandwich panel, the actual thermal buck-
ling will take place only for the 4S5 case in the region 1.5

< -g: < 1.8. Outside this region for the 4S case and for all



the range of g for the other three edge conditions, no actual
thermal buckling could occur because the sandwich panel will
first undergo superplastic creep or melting.
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Melting point 3074 °F
2C2
4S 0.50
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Fig. 9. Thermal buckling temperatures for honeycomb-core
sandwich panels under different edge conditions (constant
panel areas).

CONCLUDING REMARKS

By using the Rayleigh-Ritz method of minimizing the to-
tal potential energy of a structural system, the combined load
(mechanical or thermal) buckling equations were established
for orthotropic rectangular sandwich panels supported under
four different edge conditions. Two-dimensional buckling in-
teraction curves and three-dimensional buckling interaction
surfaces were constructed for high-temperature honeycomb-
core sandwich panels. The buckling interaction surfaces pro-
vide easy visualization of the variation of the panel buckling
strengths and the domains of buckling modes (symmetric and
antisymmetric) with the edge condition. Furthermore, the
buckling temperature curves for the sandwich panels were
presented.

The effect of transverse shear on the buckling strength is
quite large for sandwich panels, and by neglecting the trans-
verse shear effect, the buckling strengths could be overpre-
dicted considerably. With the inclusion of the transverse
shear effect, the buckling load factors became panel-size de-
pendent in addition to panel-aspect-ratio dependent. Clamp-
ing the edges could enhance the buckling strength greatly
more in compression than in shear. Thermal buckling condi-
tions for the cases with and without thermal moments were
found to be identical for the small deformation theory.*

*The author gratefully acknowledges the contributions by Barry
Randall in setting up computer programs for the eigenvalue
extractions.
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